		Reactant model				
Prod-		R_{I}	R_2	R_3	R_4	R_{5}
uct model	$f_{\mathtt{P}}$	1.1708	1.1741	f _R ——1.1808	1.1841	1.2121
P6 P7 P8 P9	1.1831 1.1982	0.9978 0.9896 0.9771 0.9690	0.9924 <i>0.9799</i>	0.9980 0.9855	1.0008 0.9882	1.0330 1.0245 1.0116 1.0032

In addition, the entry for P4-R3 should be italicized.—R. E. WESTON, JR.

Patricia S. Traylor and F. H. Westheimer: Mechanisms in the Hydrolysis of Phosphorodiamidic Chlorides.

Page 559. The heading of the first column of Table V should read: in H_2O^a .—F. H. Westheimer.

John R. Dyer, W. E. McGonigal, and K. C. Rice: Streptomycin. II. Streptose.

Page 654.

should be

JOHN R. DYER.

S. A. Latt, H. T. Cheung, and E. R. Blout: Energy Transfer. A System with Relatively Fixed Donor-Acceptor Separation.

Page 997. Structures XIb, XIIb, XIII, XV, XVI, and XVII should be as shown below.

XIb, $R_1 = p$ -methoxyphenylacetyl; $R_2 = 1$ -naphthoyl XIIb, $R_1 = 1$ -naphthoyl; $R_2 = a$ nthracene-9-carbonyl

$$\begin{array}{c} \text{RO} \\ \text{H} \\ \text{H} \\ \text{H} \end{array} + \begin{array}{c} \text{OR} \\ \text{H} \\ \text{H} \end{array}$$

XIII, R = p-methoxyphenylacetyl

XV, R = p-methoxyphenylacetyl XVI, R = 1-naphthoyl XVII, R = anthracene-9-carbonyl

Page 1002. Structure XVIII should be as shown below.

E. R. BLOUT.

Ernest Wenkert and Börje Wickberg. General Methods of Synthesis of Indole Alkaloids. IV. A Synthesis of *dl*-Eburnamonine.

Page 1583. In column 1, line 10, alkalids should read alkaloids. In footnote 24 anhydroxymethylene should read a hydroxymethylene. In Chart III the indole ring of the formula under XVII should possess a radical cation sign of plus, dot instead of the minus sign shown, while the same ring in the formula under XVIII should have a plus instead of minus sign.—Ernest Wenkert.

Myron L. Bender and James K. Stoops: Titration of the Active Sites of Acetylcholinesterase,

Page 1622. Equation 2 should read

$$N = \frac{F(A_1 - A_2) + A_3 - A_4 - A_2}{4.0 \times 10^3}$$

In the last paragraph, second sentence, *directly* proportional should be substituted for *inversely* proportional.—MYRON L. BENDER.

Anthony C. Waiss, Jr., and Joseph Corse: Photooxidative Cyclization of Quercetin Pentamethyl Ether.

Page 2068. Structure V should be

$$CH_3O \xrightarrow{O CH_3} O CH_3$$

ANTHONY C. WAISS, JR.

Neville Finch, C. W. Gemenden, Iva Hsiu-Chu Hsu, Ann Kerr, G. A. Sim, and W. I. Taylor: Oxidative Transformations of Indole Alkaloids. III. Pseudoindoxyls from Yohimbinoid Alkaloids and Their Conversion to "Invert" Alkaloids.

Page 2232 ff. In the recorded data for the optical rotatory dispersion curves $[\alpha]$ read $[\phi]$.

Page 2232. In column 2, line 9, $[\alpha]_{286} - 2850$ (inflection), $[\alpha]_{272} - 2150$ (inflection) should read $[\phi]_{286-272} - 2850$ to -2150 (inflection).

Page 2235. In column 2, lines 16 and 17, -6450 and -47,000 should read +6450 and +47,000.—WILLIAM I. TAYLOR.

Dwight R. Robinson and William P. Jencks: The Effect of Concentrated Salt Solutions on the Activity Coefficient of Acetyltetraglycine Ethyl Ester.

Page 2478. In Table VIII, the third ion listed should be Cl₃-CCOO[−], not (CH₃)₃CCOO[−].—WILLIAM P. JENCKS.

B. J. Herold, A. F. Neiva Correia, and J. dos Santos Veiga: Electron Paramagnetic Resonance Studies on Chelation of Alkali Cations by the o-Dimesitoylbenzene Radical Anion.